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Abstract—Operational modal analysis (OMA) serves
as a tool to characterize the dynamic properties of
mechanical structures. During this project, methods to
compute the modal parameters in time- and frequency
domain applied to a steel plate and a bridge are
explored. The theoretical backgrounds of OMA as a
method for system identification without known excita-
tion are explored along an evaluation of strengths and
weaknesses of different time- and frequency domain
approaches, such as frequency domain decomposition
(FDD) and stochastic subspace identification (SSI).

For validation, an experiment is set up in a labora-
tory environment to eliminate potentially disturbing
real-world influences. This test setup consists of a
simple mechanical structure (steel plate) being excited
by loads similar to operational forces for the output
accelerations to be processed. The resulting modal
parameters (modal damping, natural frequencies and
their associated mode shapes) are then compared to
the simulation results of the same part. Additionally,
experiments are conducted on a bridge, where OMA is
applied most commonly due to it not intervening with
normal bridge traffic. The results are then validated
with experimental modal analysis (EMA) performed
on the same structure.

Index Terms—Operational Modal Analysis, Struc-
tural Dynamics, System Identification, Infrastructure

I. INTRODUCTION

MODAL analysis describes a type of system
identification method where the dynamical

parameters of physical systems are extracted. These
modal parameters give useful information about the
system’s behaviour and help to avoid or target effects
like resonance.

There are multiple ways of extracting the dynam-
ical properties or modal parameters of a mechanical
system. These properties include the natural frequen-
cies, modal damping ratios as well as mode shapes
and can be calculated analytically, by means of the
finite elements (FE) method or with the use of EMA.
The third approach utilizes vibration measurements
on a structure excited by a known input force. The

modal parameters are then calculated by relating the
input force to the measured output quantities.

Another experimental approach is OMA, where
the structure is not excited artificially, but the vibra-
tion measurements of the structure are taken during
regular operation. Since the input quantities are un-
known, the basic assumption for all OMA methods
is that the operational loads provide excitation at
every frequency up to a certain value. This form
of excitation is called broadband loading [1] and is
different to white noise, in that not all frequencies are
loaded equally, so the input forces are not stochastic
but in most cases an accumulation of a multitude of
different operational loads. The processing methods,
however, all assume the input to be fully random.

For EMA the methods of excitation typically in-
clude impacts by the use of a hammer, electrome-
chanical or eccentric shakers, all typically equipped
with a force sensor for the input quantities to be
included in the computation of modal parameters.
During OMA, however, the excitation of the structure
stems from a multitude of different sources. Ac-
cording to [1], infrastructure buildings are typically
affected by wind, traffic, be it by foot or other
means, water and sound, while mechanical parts are
generally exposed to machine vibrations and impacts.

OMA provides some benefits over EMA, in that
no controlled input needs to be provided. Opera-
tional loads are also not beneficial to the results
of EMA since these forces are not accounted for
in data processing, leading to the structure having
to be analysed in a more controlled environment.
Infrastructure needs to be closed off from traffic or
machines need to be disassembled for the parts to be
tested. Large buildings, though, cannot be isolated
fully from the surrounding influences, biasing results
from EMA.

II. STATE OF THE ART

The main methods of OMA explored are the
FDD and SSI. The basis for both approaches is the
assumption of white noise force inputs over a broad



frequency range leading to the excitation of all modes
within this frequency band.

A. Frequency Domain Decomposition

According to [1] the time response of a system

y⃗(t) = Φq⃗(t) =
M∑

m=1

ϕ⃗m · qm(t) (1)

can be described as the product of mode shapes ϕ⃗n,
within the mode shape matrix Φ, and the modal
coordinates qn(t), arranged in the modal coordinate
vector q⃗(t), with m = 1, 2, · · · , M − 1, M de-
termining the number of modal coordinates. The
correlation

Ry(τ) = E[y⃗(t)y⃗T (t+ τ)] (2)

of the response is formed, where E[ ] denotes the
expected value of the function. Combining equations
(1) and (2) leads to

Ry = ΦRq(τ)Φ
T = ΦE[q⃗(t)q⃗T (t+ τ)]ΦT . (3)

This can be done since the mode shape matrix Φ
is not a function of time. Equation (3) can now be
transformed into frequency domain by applying the
Fourier transform F{} on the correlations

Gy(f) = F{Ry} = ΦF{Rq}ΦT . (4)

Gy(f) is the spectral density (SD) of the structure’s
output. The equation (4) can be rewritten as

Gy(f) = ΦGq(f)Φ
H = Φ[g2m(f)]ΦH (5)

where g2m(f) are the auto spectral densities of the
modal coordinates. Since the mode shape matrix is
complex, the hermitian, or conjugate transpose H is
used. Equation (5) is equivalent to the singular value
decomposition of a quadratic matrix.

Gy(f) = USUH = U [s2m(f)]UH (6)

This leads to the conclusion that applying the sin-
gular value decomposition on the SD matrix of the
measured system output can provide us with the
mode shape matrix Φ = U and the autospectral
densities Gq of the modal coordinates positioned
at the diagonal of S. However, it is important to
note that this operation is only performed under the
assumption that the mode shapes are uncorrelated.
This means that the mode shape matrix Φ is unitary,
meaning that the columns are completely orthogonal
to each other. In reality this is not the case, which is
why the FDD delivers only an approximation of the
modes. The singular value decomposition arranges S

in order of magnitude. To identify the frequencies of
interest the largest singular value is plotted over all
frequencies, so that the peaks can be picked. To get
the mode shape at the frequency of interest, fj , the
first column of U(fj) is extracted, due to it having
the highest influence on the system response because
it is multiplied with the largest singular value. This
method is patented to [2].

To estimate the damping values at each frequency
of interest, the enhanced frequency domain decom-
position (EFDD) is used as described in [3]. Over
a certain bandwidth around one natural frequency
the according mode shape dominates. Correlating the
mode shape ϕ⃗1 at fj to all the other mode shapes ϕ⃗2
via the modal assurance criterion (MAC) [4],

MAC(ϕ⃗1, ϕ⃗2) =
|ϕ⃗H1 ϕ⃗2|2

(ϕ⃗H1 ϕ⃗1)(ϕ⃗
H
2 ϕ⃗2)

, (7)

over the complete spectrum can isolate the peak of in-
terest by it having to surpass a threshold. The singular
values over this bandwidth are determined to be the
SD of one single degree of freedom (SDOF) system.
This isolated peak is then re-transformed into the
time domain, leading to the autocorrelation function
of the peak. The natural frequency of said SDOF
autocorrelation function can now be determined by
identifying the frequency of its zero-crossings. The
logarithmic decrement

δ =
2

k
ln

(
r0
|rk|

)
, (8)

with r0 being the initial and rk being the kth ex-
treme of the autocorrelation function, determines the
damping ratio ζ via

ζ =
δ√

δ2 + 4π2
. (9)

In practice it is common [3] to perform a linear fit
using the least squares method on kδ and 2 ln(|rk|),
which returns an estimate for the logarithmic decre-
ment.

B. Stochastic Subspace Identification

Since the amount of different identification algo-
rithms for linear time invariant (LTI) systems using
the subspace method seems endless, the focus is
placed on the covariance driven stochastic subspace
identification (SSI-COV), which is used during the
experiments performed for the purposes of this Mas-
ter’s project.

SSI-COV, according to [5], is based on estimating
the discrete system matrix A and the output influence



matrix C by means of the output covariances Ryy

within the Toeplitz matrix Ti, which is the arranged
in the form of

Ti =


Ryy,i Ryy,i−1 · · · Ryy,1

Ryy,i+1 Ryy,i · · · Ryy,2

Ryy,i+2 Ryy,i+1 · · · Ryy,3
...

...
. . .

...
Ryy,2i−1 Ryy,2i−2 · · · Ryy,i

 . (10)

Basically the Toeplitz matrix contains all output co-
variance matrices shifted by up to 2i−1. Substituting
the shifted covariances with

Ryy,i = CAi−1Rxy (11)

shows that, conveniently, the system matrix A and
the output influence matrix C, together with the
covariance Rxy between states x⃗ and outputs y⃗ are
contained within the Toeplitz matrix, which in turn
can be calculated from the measurement data only.
To extract A and C, Ti can be split up into the
observability matrix

Γi =


C
CA

...
CAi−1

 (12)

and a reverse variation of the controllability matrix
for stochastic systems

∆i =
[
Ai−1Rxy · · · ARxy Rxy

]
(13)

according to
Ti = Γi∆i . (14)

Decomposing the Toeplitz matrix into Γi and ∆i is
achieved by utilizing the singular value decomposi-
tion

Ti = USV T =
[
U1 U2

] [S1 0
0 S2

] [
V T
1

V T
2

]
. (15)

Only the non-zero entries of the singular values, S1,
and the according singular vectors U1 and V T

1 are
used for the calculation of Γi, hence

Ti = U1S1V
T
1 = Γi∆i . (16)

Expanding equation (16) with the weighting matrix
W , which is then replaced by a unit matrix, and
splitting it into

Γi = U1S
1/2
1 W = U1S

1/2
1 (17)

and
∆i = W−1S

1/2
1 V T

1 = S
1/2
1 V T

1 (18)

is done due to the similarity to equation (14).

According to [6], C can be determined directly
from the observability matrix, by extracting its first
block. The methods for determining A vary. One
approach of extracting the system matrix is the
method proposed by [7] solving

A = Γ+
1 Γ2 , (19)

where Γ+
1 denotes the pseudoinverse of all block

rows of the observability matrix except the last, while
Γ2 denotes all block rows except the first one. This
is based on

Γ2 =


CA
CA2

...
CAi

 = AΓ1 = A


A
CA

...
CAi−1

 . (20)

According to [6] the modal parameters for each
order can be extracted by performing the eigenvalue
decomposition of the System matrix A using

A = Ψi [µi]Ψ
−1
i . (21)

with Ψi being its eigenvectors and µi being the
eigenvalues or poles of the discrete system. The
continuous poles λi are calculated via

λi =
ln(µi)

∆T
, (22)

with ∆T being the sampling time. The natural fre-
quency is now the absolute of the continuous pole

fi = |λi| (23)

and the according damping ratio ζi is

ζi =
Re(λi)

|λi|
. (24)

The mode shape vector ϕ⃗i is the product of each
eigenvector ψ⃗i, which are the columns of Ψi, and
the output influence matrix

ϕ⃗i = Cψ⃗i . (25)

Throughout those calculations i determines the
order of the state space representation. It is common
practice to iterate over different orders, extracting
the model parameters for each and then checking for
large deviations of modal parameters over the order
changes. If the values vary strongly they are removed.
Categorization into different kinds of stability are
also common. Sometimes it is useful to know poles,
which are stable in frequency, mode shapes, damping
or all of the above. The results of the SSI are then
typically plotted in a stability diagram.



According to [6] the algorithm speed is drastically
increased by calculating Ti and performing the sin-
gular value decomposition for the highest order first
and then varying the number of singular values and
vectors according to the current order.

III. OBJECTIVES

The overall objective is to implement and apply
OMA methods, be it SSI or FDD on real structures
and validate the results to judge its field of applica-
tion.

OMA is implemented by creating a custom pro-
gram in Python. The goal is then to initially test
OMA on a computationally generated dataset first
to check for correctness of implementation. Further-
more, the goal of creating an experiment under labo-
ratory conditions is set. For this purpose a steel plate
with a hole is designed. Research on how to excite
the structure in ways similar to the operational loads
acting on a mechanical structure is done and applied.
Since a detailed computer aided design (CAD) model
is available, the results of OMA can be validated with
simulation results stemming from ANSYS. The next
objective during the project is to perform OMA on
a bridge. To draw conclusions about the validity of
results EMA is performed simultaneously with an
impact hammer. But not only the validity of OMA
will be determined; also, the the quality of results will
show, which method performs better under certain
circumstances.

IV. METHODS

The methodologies employed in this project are
designed to achieve a comprehensive understanding
of the OMA-techniques described in section II and
their practical applications. The approaches are struc-
tured to ensure thorough validation and comparison
of the implemented methods each step of the way.

A. Implementation of OMA Techniques in Python

To create a reliable Python module containing all
the necessary functions needed to process acceler-
ation data provided from measurements, a dataset
is generated. A system comprised of three masses,
which are limited to one degree of freedom each,
connected via springs and dampers are virtually
excited by band-limited white noise. For testing pur-
poses even harmonic components are introduced to
check if the methods identify deterministic excitation
wrongly as physical modes.

B. Experimental Setup and Validation of OMA on a
Steel Plate

To create the ideal object, on which to test the
effectiveness of OMA, a steel plate is designed in
CAD. The 3d model is created and its dimensions
adapted, so that most of the natural frequencies are
well separated from each other. This is done by
iteratively adapting the design and performing modal
analysis in ANSYS. If the result is satisfactory, the
plate, depicted in figure 1, is manufactured.

Electromagnetic Shaker
Accelerometers

Data Acquisition Unit

Fig. 1: OMA is performed on a steel plate with a
multitude of different excitation methods.

The plate is subjected to random impacts, mimick-
ing operational loads, while the shaker also provides
deterministic excitation, which then need to be sep-
arated from the real natural frequencies during data
processing, testing the anticipated limits of OMA.

C. Field Application on Tiflis Bridge

The next step is to apply all the knowledge gained
from previous experiments on a structure, for which
OMA is intended. The Tiflis Bridge, depicted in
figure 2, in Innsbruck is spanned over the river Sill
and is a steel construction measuring 42.8m in length
and 5.75m in width.

Fig. 2: The Tiflis Bridge spans the river Sill and is
used mainly for foot- and bike traffic.



The measurement setup is arranged in the follow-
ing way. Roving sensors are positioned at two of the
twelve modal points of interest near the railing of
the bridge, depicted in figure 3, while one reference
sensor is placed at a point, where no vibration node
is expected. The reference sensor is used to scale the
mode shapes, which is necessary since the excitation
forces vary in strength over time, which means that
the mode shapes of the reference sensors need to be
scaled using the modal displacement of the reference
coordinate. This approach enables the use less of
sensors, without decreasing the resolution of the
mode shapes.

Data Acquisition Unit

Roving Accelerometers

Tiflis Bridge

Reference Accelerometer

Modal Points

Fig. 3: The measurement setup used to perform OMA
on the Tiflis bridge consists of two roving- and one
reference sensor.

Traffic is limited, since it is closed of to cars and
only bikers, pedestrians and the occasional scooter
are allowed to pass. It is anticipated that the natural
excitation is limited, leading to difficulties in data
processing and extraction of modal parameters. Since
EMA is performed at the same date at the same
structure, a large impact hammer is used to artificially
provide more excitation.

D. Field Application on Grenobler Bridge

A third field experiment is conducted, this time
however on a bridge with more traffic. The Grenobler
Bridge is displayed in figure 4 [8].

The increase in traffic intensity should, in theory at
least, lead to a better excitation of modes. In contrast
to the Tiflis Bridge the Grenobler bridge consists of
two parts running parallel to each other. One part is
intended for car traffic, while the other one is used
for public transport via trams on the upper level,
and foot- and bike traffic on the lower level. The
bridge is supported on each end and via two pillars,
each placed 28.5m from the ends. The Distance
between them is 44.0m. The width of the upper
level is 6.5m while the lower level width is 3.5m.
The cross-section of the bridge is slightly asymmetric
which should lead to horizontal displacements in the

Fig. 4: The object of interest is the part of the
Grenobler Bridge used for public transport, foot- and
bike traffic.

direction of the river. Hence triaxial sensors are used
with their z-axis showing in vertical direction and
the x-axis showing down the river. Two of these
are placed directly in next to the railings, 47.6m
from the north-end. This placement slightly out of
centre is chosen to avoid measuring at a vibration
node, which for beam like structures are generally
found in the middle between supports. The goal of
this measurement is not to get the complete mode
shape of the Grenobler bridge but to check if the
excitation stemming from increased traffic, especially
trams, leads to an improvement in the identification
of modal parameters.

V. RESULTS

A. Results of OMA on the Steel Plate

The measured data from the plate experiment is
now used in both methods of OMA, with the singular
value plot and the stability diagram depicted in figure
5.
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Fig. 5: The singular values and the poles extracted
from the measurements performed on the plate.



The first peak (marked in blue) is not picked, since
it does not correspond to any stable pole. Continuing
with the modal analysis, both in frequency- and time
domain, each dataset is evaluated separately and the
frequency and damping results averaged. The results
are listed in table I.

Method fn /Hz ζ /% MPC

SSI-COV 20.12 0.21 0.98
25.48 0.07 0.99
47.53 0.27 0.95
50.70 0.32 0.98
72.81 0.21 0.99
83.58 0.14 0.99
95.68 0.09 0.99

EFDD 20.13 0.24 0.99
25.48 0.15 0.98
47.54 0.15 0.79
50.70 0.19 0.76
72.82 0.16 0.99
83.56 0.11 0.98
95.67 0.08 0.99

FE 19, 28
24, 28
46, 94
49, 16
70, 47
82, 23
93, 43

TABLE I: Comparison of modal parameters between
OMA and FE performed on a steel plate.

ANSYS generally performs modal analysis with-
out taking the damping properties of the material into
consideration. Hence the modes are non-complex and
damping values are not included in table I. The
frequencies of the simulation result are within 1Hz
to 2Hz of those determined by OMA, validating the
method of output only modal analysis, at least under
laboratory conditions.

B. Results of OMA on Tiflis Bridge

The measurement data of the recording sessions
performed on the Tiflis Bridge is processed using the
EFDD and SSI-COV. The resulting stability diagram
over the singular value spectrum is depicted in figure
6.
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Fig. 6: The largest singular values and the stability
diagram of the measurements performed on the Tiflis
Bridge (session 1) are plotted up the the 25Hz. The
picked peaks are marked with red dots.

The highest peaks of the spectrum clearly indicate
at least five physical modes up to 25Hz and the
stability diagram shows the same result. The resulting
poles of the SSI-COV, however, slightly drift away
from each other at higher orders. One reason could
be the slight change in natural frequencies due to the
bridge being very light and its mass changing with
traffic in between the recordings of the individual
datasets. A comparison of results between EMA and
both OMA methods is shown in table II.

Method fn /Hz ζ /% MPC

SSI-COV 1.84 2.76 0.96
6.34 0.67 1.00
7.10 1.36 0.99
13.31 0.48 1.00

EFDD 1.82 4.90 1.00
6.35 0.10 0.99
7.11 0.72 0.98
13.31 0.74 1.00
16.95 0.47 1.00

EMA 1.87 3.00 0.97
6.07 0.45 0.87
6.89 5.10 0.98
13.34 0.77 0.94
16.93 0.44 0.43

TABLE II: Comparison of modal parameters between
OMA methods performed on the Tiflis Bridge.

The first five mode shapes of the Tiflis Bridge are
displayed in figure 7.
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Fig. 7: The first five mode shapes of the Tiflis bridge.

The mode shapes of the Tiflis Bridge follow the
expected pattern of one added vibration node at each
new mode. The same goes for the torsional modes.

C. Results of OMA on Grenobler Bridge

The measurements of vertical and horizontal ac-
celerations measured on the Grenobler Bridge result
in the singular value spectrum and stability diagram
depicted in figure 8.
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Fig. 8: Stability diagram and singular value spectrum
of OMA performed on two axis of the Grenobler
Bridge.

The largest peaks of the singular value spectrum
clearly correspond to the stable poles displayed on
the stability diagram. All of these modes, however,
seem to be bending modes since the signs of the
mode shapes in vertical direction are equal at each.
The modal displacements in the direction of the river
show effects from the asymmetric design leading
to significant horizontal movement. Taking measure-
ments at more modal coordinates on the bridge
should give more information and torsional modes
should also be made visible. The results from EFDD
and SSI-COV are listed in table III.

Method fn /Hz ζ /% MPC

SSI-COV 3.43 5.34 1.00
17.09 1.10 0.99
31.21 0.73 0.41
36.20 0.27 0.71

EFDD 3.58 6.13 0.99
17.15 0.22 0.09
31.25 0.81 1.00
36.21 0.33 1.00

TABLE III: Comparison of modal parameters be-
tween OMA methods performed on the Grenobler
Bridge.

The tests performed on the Grenobler bridge do
not seem to show big improvements in terms of ease
of identification, even though the loads from traffic
are a lot higher than the ones on the Tiflis Bridge.

VI. CONCLUSION

The results of OMA performed on the two mea-
surements of the Tiflis Bridge show that modal anal-
ysis of infrastructure using the output only approach
works. The quality of results, however, heavily de-
pends on the natural excitation present at each day.
Influences like differences in currents of the river
flowing under the bridge, wind strength and the
intensity of traffic can skew the results. When the
natural excitation covers a broad band of frequencies
without containing too many harmonic components,
the process of identifying physical modes with the
help of the singular value spectrum as well as the
stability diagram generated from SSI is relatively
straight forward. If the forces on the structure only
excite certain frequencies or modes, the process can
be very tedious for the user. In general it seems
good practice on bridge like structures to artificially
improve excitation by applying impacts random in
time and space. If impacts are not an option when
carrying out the measurements, OMA is still possible



but the selection of physical modes heavily relies
on the knowledge of the conducting engineer about
structural dynamics and realistic mode shapes for
these structures. For bridges, which are beam-like in
shape the modes follow certain patterns, where for
bending modes a zero-crossing is added each mode.

Comparing the results of frequency- and time
domain methods one can conclude that except for
the differences in damping estimation, which even
for traditional methods like EMA is not very reliable,
both work well to extract the modal parameters. The
peak picking technique used for EFDD relies more
on the experience and existing knowledge of the
user since the peaks do not always correspond to
physical modes. That is why a combination of both
methods seems to be the ideal approach, though, this
corresponds to an increase in computational effort.

As for the the comparison with EMA, OMA def-
initely has its advantages. An infrastructure building
can never be completely isolated from all forces
acting on it. Hence the calculation of modal param-
eters using EMA is always biased. For very large
buildings the excitation sources have to be capable
of producing immense forces for the structure to
be excited in a sufficient manner. These technical
solutions are not necessary for OMA. The disadvan-
tages of output only modal analysis, however, are the
increased measurement times and the need for more
sensors, since references are necessary.

One could now conclude that the ideal approach
for performing OMA on a bridge is to measure the
building with added excitation, if feasible, and dur-
ing processing combine EFDD with SSI to reliably
choose the physical modes of the structure.
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